- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Alberto, Filipe (2)
-
Molano, Gary (2)
-
Calhoun, Sara (1)
-
DeWeese, Kelly (1)
-
Diesel, Jose (1)
-
Grigoriev, Igor V (1)
-
Harden, Maddelyn (1)
-
Koos, David S (1)
-
Kovalev, Maxim (1)
-
Kuo, Alan (1)
-
Lansford, Rusty (1)
-
Lipzen, Anna (1)
-
Miller, Robert (1)
-
Miller, Robert J (1)
-
Montecinos, Gabriel J (1)
-
Nuzhdin, Sergey (1)
-
Nuzhdin, Sergey V (1)
-
Reed, Daniel (1)
-
Reed, Daniel C (1)
-
Salamov, Asaf (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kelps are vital for marine ecosystems, yet the genetic diversity underlying their capacity to adapt to climate change remains unknown. In this study, we focused on the kelp Macrocystis pyrifera a species critical to coastal habitats. We developed a protocol to evaluate heat stress response in 204 Macrocystis pyrifera genotypes subjected to heat stress treatments ranging from 21 °C to 27 °C. Here we show that haploid gametophytes exhibiting a heat-stress tolerant (HST) phenotype also produced greater biomass as genetically similar diploid sporophytes in a warm-water ocean farm. HST was measured as chlorophyll autofluorescence per genotype, presented here as fluorescent intensity values. This correlation suggests a predictive relationship between the growth performance of the early microscopic gametophyte stage HST and the later macroscopic sporophyte stage, indicating the potential for selecting resilient kelp strains under warmer ocean temperatures. However, HST kelps showed reduced genetic variation, underscoring the importance of integrating heat tolerance genes into a broader genetic pool to maintain the adaptability of kelp populations in the face of climate change.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Diesel, Jose; Molano, Gary; Montecinos, Gabriel J; DeWeese, Kelly; Calhoun, Sara; Kuo, Alan; Lipzen, Anna; Salamov, Asaf; Grigoriev, Igor V; Reed, Daniel C; et al (, BMC Genomics)Abstract Macrocystis pyrifera(giant kelp), is a brown macroalga of great ecological importance as a primary producer and structure-forming foundational species that provides habitat for hundreds of species. It has many commercial uses (e.g. source of alginate, fertilizer, cosmetics, feedstock). One of the limitations to exploiting giant kelp’s economic potential and assisting in giant kelp conservation efforts is a lack of genomic tools like a high quality, contiguous reference genome with accurate gene annotations. Reference genomes attempt to capture the complete genomic sequence of an individual or species, and importantly provide a universal structure for comparison across a multitude of genetic experiments, both within and between species. We assembled the giant kelp genome of a haploid female gametophyte de novo using PacBio reads, then ordered contigs into chromosome level scaffolds using Hi-C. We found the giant kelp genome to be 537 MB, with a total of 35 scaffolds and 188 contigs. The assembly N50 is 13,669,674 with GC content of 50.37%. We assessed the genome completeness using BUSCO, and found giant kelp contained 94% of the BUSCO genes from the stramenopile clade. Annotation of the giant kelp genome revealed 25,919 genes. Additionally, we present genetic variation data based on 48 diploid giant kelp sporophytes from three different Southern California populations that confirms the population structure found in other studies of these populations. This work resulted in a high-quality giant kelp genome that greatly increases the genetic knowledge of this ecologically and economically vital species.more » « less
An official website of the United States government
